• Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    Article 

    Google Scholar
     

  • Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hicks Pries, C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Cerdan, O. et al. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122, 167–177 (2010).

    Article 

    Google Scholar
     

  • Van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).

    Article 

    Google Scholar
     

  • Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 29, 534–554 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gudasz, C. et al. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466, 478–481 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Marotta, H. et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Change 4, 467–470 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rommens, T. et al. Soil erosion and sediment deposition in the Belgian loess belt during the Holocene: establishing a sediment budget for a small agricultural catchment. Holocene 15, 1032–1043 (2005).

    Article 

    Google Scholar
     

  • Phillips, J. D. Fluvial sediment budgets in the North Carolina Piedmont. Geomorphology 4, 231–241 (1991).

    Article 

    Google Scholar
     

  • Trimble, S. W. & Crosson, P. U.S. Soil erosion rates—myth and reality. Science 289, 248–250 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Harden, J. W. et al. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13, 885–901 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Billings, S. A., Buddemeier, R. W., Richter, D. D., Van Oost, K. & Bohling, G. A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Glob. Biogeochem. Cycles 24, GB2001 (2010).

    Article 

    Google Scholar
     

  • Berhe, A. A., Harden, J. W., Torn, M. S. & Harte, J. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J. Geophys. Res. Biogeosci. 113, G04039 (2008).

    Article 

    Google Scholar
     

  • Nadeu, E., Berhe, A. A., de Vente, J. & Boix-Fayos, C. Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences 9, 1099–1111 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. The fate of buried organic carbon in colluvial soils: a long-term perspective. Biogeosciences 11, 873–883 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z., Van Oost, K. & Govers, G. Predicting the long-term fate of buried organic carbon in colluvial soils. Glob. Biogeochem. Cycles 29, 65–79 (2015).

    Article 

    Google Scholar
     

  • VandenBygaart, A. J., Kroetsch, D., Gregorich, E. G. & Lobb, D. Soil C erosion and burial in cropland. Glob. Change Biol. 18, 1441–1452 (2012).

    Article 

    Google Scholar
     

  • Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob. Biogeochem. Cycles 19, GB4011 (2005).

    Article 

    Google Scholar
     

  • Sobek, S. et al. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol. Oceanogr. 54, 2243–2254 (2009).

    Article 

    Google Scholar
     

  • Doetterl, S. et al. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth Sci. Rev. 154, 102–122 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Change 7, 345–349 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article 

    Google Scholar
     

  • Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32, 306–323 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, T., Shi, P., Hui, D. & Luo, Y. Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon–climate feedback. J. Geophys. Res. Biogeosci. 114, G02016 (2009).

    Article 

    Google Scholar
     

  • Doetterl, S., Van Oost, K. & Six, J. Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surf. Process. Landf. 37, 642–655 (2012).

    Article 

    Google Scholar
     

  • Kosmas, C. et al. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Tillage Res. 58, 31–44 (2001).

    Article 

    Google Scholar
     

  • Dercon, G. et al. Spatial variability in crop response under contour hedgerow systems in the Andes region of Ecuador. Soil Tillage Res. 86, 15–26 (2006).

    Article 

    Google Scholar
     

  • Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Cotrufo, M. F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 95–300 (2021).

  • Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).

  • Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. & Fang, H. Impacts of climate change on water erosion: a review. Earth Sci. Rev. 163, 94–117 (2016).

    Article 

    Google Scholar
     

  • Sutton, R. T. & Hawkins, E. ESD ideas: global climate response scenarios for IPCC assessments. Earth Syst. Dynam. 11, 751–754 (2020).

    Article 

    Google Scholar
     

  • Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Quine, T. A. & Van Oost, K. Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories. Glob. Change Biol. 13, 2610–2625 (2007).

    Article 

    Google Scholar
     

  • Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).

    Article 

    Google Scholar
     

  • Van Oost, K. et al. Landscape-scale modeling of carbon cycling under the impact of soil redistribution: the role of tillage erosion. Glob. Biogeochem. Cycles 19, GB4014 (2005).


    Google Scholar
     

  • Gerwitz, A. & Page, E. R. An empirical mathematical model to describe plant root systems. J. Appl. Ecol. 11, 773–781 (1974).

    Article 

    Google Scholar
     

  • Wang, Z. Erosion-C model. Zenodo https://doi.org/10.5281/zenodo.7224539 (2022).



  • Source link