• 1.

    Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).


    Google Scholar
     

  • 2.

    Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1, 864–869 (2008).


    Google Scholar
     

  • 3.

    Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).


    Google Scholar
     

  • 4.

    Durack, P. J. & Wijffels, S. E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23, 4342–4362 (2010).


    Google Scholar
     

  • 5.

    Sabine, C. L. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    CAS 

    Google Scholar
     

  • 6.

    Talley, L. D. et al. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8, 185–215 (2016).

    CAS 

    Google Scholar
     

  • 7.

    Waugh, D. W., Primeau, F., DeVries, T. & Holzer, M. Recent changes in the ventilation of the southern oceans. Science 339, 568–570 (2013).

    CAS 

    Google Scholar
     

  • 8.

    Fyfe, J. C. Southern Ocean warming due to human influence. Geophys. Res. Lett. 33, L19701 (2006).


    Google Scholar
     

  • 9.

    Sigmond, M., Reader, M. C., Fyfe, J. C. & Gillett, N. P. Drivers of past and future Southern Ocean change: stratospheric ozone versus greenhouse gas impacts. Geophys. Res. Lett. 38, L12601 (2011).


    Google Scholar
     

  • 10.

    Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    CAS 

    Google Scholar
     

  • 11.

    Shi, J.-R., Xie, S.-P. & Talley, L. D. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Clim. 31, 7459–7479 (2018).


    Google Scholar
     

  • 12.

    Manabe, S., Bryan, K. & Spelman, M. J. Transient response of a global ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J. Phys. Oceanogr. 20, 722–749 (1990).


    Google Scholar
     

  • 13.

    Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    CAS 

    Google Scholar
     

  • 14.

    Shi, J.-R., Talley, L. D., Xie, S.-P., Liu, W. & Gille, S. T. Effects of buoyancy and wind forcing on Southern Ocean climate change. J. Clim. 33, 10003–10020 (2020).


    Google Scholar
     

  • 15.

    Rintoul, S. R. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018).

    CAS 

    Google Scholar
     

  • 16.

    Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr. 36, 2232–2252 (2006).


    Google Scholar
     

  • 17.

    Meredith, M. P. & Hogg, A. M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett. 33, L16608 (2006).


    Google Scholar
     

  • 18.

    Farneti, R., Delworth, T. L., Rosati, A. J., Griffies, S. M. & Zeng, F. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40, 1539–1557 (2010).


    Google Scholar
     

  • 19.

    Downes, S. M., Budnick, A. S., Sarmiento, J. L. & Farneti, R. Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett. 38, L11605 (2011).


    Google Scholar
     

  • 20.

    Meredith, M. P., Naveira Garabato, A. C., Hogg, A. M. & Farneti, R. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Clim. 25, 99–110 (2012).


    Google Scholar
     

  • 21.

    Marshall, D. P., Ambaum, M. H. P., Maddison, J. R., Munday, D. R. & Novak, L. Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett. 44, 286–292 (2017).


    Google Scholar
     

  • 22.

    Hogg, A. M. et al. Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans 120, 257–267 (2015).


    Google Scholar
     

  • 23.

    Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr. 43, 507–532 (2013).


    Google Scholar
     

  • 24.

    Roemmich, D. et al. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr. 37, 162–173 (2007).


    Google Scholar
     

  • 25.

    Fine, R. A., Peacock, S., Maltrud, M. E. & Bryan, F. O. A new look at ocean ventilation time scales and their uncertainties. J. Geophys. Res. Oceans 122, 3771–3798 (2017).


    Google Scholar
     

  • 26.

    Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).


    Google Scholar
     

  • 27.

    Gent, P. R., Large, W. G. & Bryan, F. O. What sets the mean transport through Drake Passage? J. Geophys. Res. Oceans 106, 2693–2712 (2001).


    Google Scholar
     

  • 28.

    Borowski, D., Gerdes, R. & Olbers, D. Thermohaline and wind forcing of a circumpolar channel with blocked geostrophic contours. J. Phys. Oceanogr. 32, 2520–2540 (2002).


    Google Scholar
     

  • 29.

    Hogg, A. M. C. An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett. 37, L23601 (2010).


    Google Scholar
     

  • 30.

    Wang, G., Xie, S. P., Huang, R. X. & Chen, C. Robust warming pattern of global subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).


    Google Scholar
     

  • 31.

    Hogg, A. M. C. & Gayen, B. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 47, e2020GL088539 (2020).


    Google Scholar
     

  • 32.

    Gent, P. R. & Mcwilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).


    Google Scholar
     

  • 33.

    Gent, P. R. & Danabasoglu, G. Response to increasing Southern Hemisphere winds in CCSM4. J. Clim. 24, 4992–4998 (2011).


    Google Scholar
     

  • 34.

    Liu, W. et al. Southern Ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation. J. Clim. 31, 4727–4743 (2018).


    Google Scholar
     

  • 35.

    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr. 82, 81–100 (2009).


    Google Scholar
     

  • 36.

    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).


    Google Scholar
     

  • 37.

    Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).


    Google Scholar
     

  • 38.

    Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. Discuss. 12, 4823–4873 (2019).

    CAS 

    Google Scholar
     

  • 39.

    Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).


    Google Scholar
     

  • 40.

    McDonagh, E. L. et al. Decadal changes in the South Indian Ocean thermocline. J. Clim. 18, 1575–1590 (2005).


    Google Scholar
     

  • 41.

    Chidichimo, M. P., Donohue, K. A., Watts, D. R. & Tracey, K. L. Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage. J. Phys. Oceanogr. 44, 1829–1853 (2014).


    Google Scholar
     

  • 42.

    Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P. & Chereskin, T. K. Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophys. Res. Lett. 43, 11760–11767 (2016).


    Google Scholar
     

  • 43.

    Hughes, C. W., Williams, J., Coward, A. C. & de Cuevas, B. A. Antarctic circumpolar transport and the southern mode: a model investigation of interannual to decadal timescales. Ocean Sci. 10, 215–225 (2014).


    Google Scholar
     

  • 44.

    Killworth, P. D. & Hughes, C. W. The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res. 60, 19–45 (2002).


    Google Scholar
     

  • 45.

    Koenig, Z., Provost, C., Ferrari, R., Sennechael, N. & Rio, M.-H. Volume transport of the Antarctic Circumpolar Current: production and validation of a 20 year long time series obtained from in situ and satellite observations. J. Geophys. Res. Oceans 119, 5407–5433 (2014).


    Google Scholar
     

  • 46.

    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. I 42, 641–673 (1995).


    Google Scholar
     

  • 47.

    Fasullo, J. T. & Nerem, R. S. Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proc. Natl Acad. Sci. USA 115, 12944–12949 (2018).

    CAS 

    Google Scholar
     

  • 48.

    Cheng, L., Wang, G., Abraham, J. & Huang, G. Decadal ocean heat redistribution since the late 1990s and its association with key climate modes. Climate 6, 91 (2018).


    Google Scholar
     

  • 49.

    Cheng, L. & Zhu, J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Clim. 29, 5393–5416 (2016).


    Google Scholar
     

  • 50.

    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).


    Google Scholar
     

  • 51.

    Gouretski, V. & Reseghetti, F. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database. Deep Sea Res. I 57, 812–833 (2010).


    Google Scholar
     

  • 52.

    Locarnini, R. A. et al. World Ocean Atlas 2018 Volume 1: Temperature NOAA Atlas NESDIS 81 (Ocean Climate Laboratory National Centers for Environmental Information, 2019).

  • 53.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).


    Google Scholar
     

  • 54.

    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).


    Google Scholar
     

  • 55.

    Haarsma, R. J. et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).


    Google Scholar
     

  • 56.

    Liu, W., Lu, J. & Xie, S.-P. Understanding the Indian Ocean response to double CO2 forcing in a coupled model. Ocean Dyn. 65, 1037–1046 (2015).


    Google Scholar
     

  • 57.

    Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss. 8, 3653–3743 (2015).


    Google Scholar
     

  • 58.

    Redi, M. H. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12, 1154–1158 (1982).


    Google Scholar
     

  • 59.

    Gaspar, P., Grégoris, Y. & Lefevre, J.-M. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at Station Papa and long-term upper ocean study site. J. Geophys. Res. Oceans 95, 16179–16193 (1990).


    Google Scholar
     

  • 60.

    Peng, Q., Xie, S. P., Wang, D., Zheng, X. T. & Zhang, H. Coupled ocean–atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 10, 298 (2019).


    Google Scholar
     

  • 61.

    Peng, Q. et al. Eastern Pacific wind effect on the evolution of El Niño: implications for ENSO diversity. J. Clim. 33, 3197–3212 (2020).


    Google Scholar
     



  • Source link