• 1.

    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    CAS 

    Google Scholar
     

  • 2.

    Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401 (2018).

    CAS 

    Google Scholar
     

  • 3.

    Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    CAS 

    Google Scholar
     

  • 4.

    Tong, D. et al. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environ. Sci. Technol. 52, 12905–12914 (2018).

    CAS 

    Google Scholar
     

  • 5.

    Wu, R. et al. Air quality and health benefits of China’s emission control policies on coal-fired power plants during 2005–2020. Environ. Res. Lett. 14, 094016 (2019).


    Google Scholar
     

  • 6.

    Ou, Y., West, J. J., Smith, S. J., Nolte, C. G. & Loughlin, D. H. Air pollution control strategies directly limiting national health damages in the US. Nat. Commun. 11, 957 (2020).

    CAS 

    Google Scholar
     

  • 7.

    West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    CAS 

    Google Scholar
     

  • 8.

    Driscoll, C. T. et al. US power plant carbon standards and clean air and health co-benefits. Nat. Clim. Change 5, 535–540 (2015).

    CAS 

    Google Scholar
     

  • 9.

    Buonocore, J. J. et al. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Change 6, 100–105 (2016).


    Google Scholar
     

  • 10.

    Shindell, D. T., Lee, Y. & Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Change 6, 503–507 (2016).


    Google Scholar
     

  • 11.

    Millstein, D., Wiser, R., Bolinger, M. & Barbose, G. The climate and air-quality benefits of wind and solar power in the United States. Nat. Energy 2, 17134 (2017).

  • 12.

    Silva, R. A. et al. Future global mortality from changes in air pollution attributable to climate change. Nat. Clim. Change 7, 647–651 (2017).


    Google Scholar
     

  • 13.

    Peng, W. et al. Managing China’s coal power plants to address multiple environmental objectives. Nat. Sustain. 1, 693–701 (2018).


    Google Scholar
     

  • 14.

    Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change 8, 291–295 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10, 5229 (2019)..

  • 16.

    Shindell, D. & Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 573, 408–411 (2019).

    CAS 

    Google Scholar
     

  • 17.

    Scovronick, N. et al. The impact of human health co-benefits on evaluations of global climate policy. Nat. Commun. 10, 2095 (2019).


    Google Scholar
     

  • 18.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS 

    Google Scholar
     

  • 19.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • 20.

    Tong, D. et al. Targeted emission reductions from global super-polluting power plant units. Nat. Sustain. 1, 59–68 (2018).


    Google Scholar
     

  • 21.

    Luckow, P., Wise, M. A., Dooley, J. J. & Kim, S. H. Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int. J. Greenh. Gas Control 4, 865–877 (2010).

    CAS 

    Google Scholar
     

  • 22.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of Shared Socioeconomic Pathways. Clim. Change 122, 387–400 (2014).


    Google Scholar
     

  • 23.

    Rao, A. B. et al. Evaluation of potential cost reductions from improved amine-based CO2 capture systems. Energy Policy 34, 3765–3772 (2006).


    Google Scholar
     

  • 24.

    van Horssen, A. et al. The Impacts of CO2 Capture Technologies in Power Generation and Industry on Greenhouse Gases Emissions and Air Pollutants in the Netherlands (TNO and Univ. of Utrecht, 2009); https://www.rivm.nl/bibliotheek/digitaaldepot/BOLK_II_CCS_Final-Version%20UPDATE%2028-07-2010.pdf

  • 25.

    Air Pollution Impacts from Carbon Capture and Storage (CCS) EEA Technical Report No. 14/2011 (European Environment Agency, 2011); https://www.eea.europa.eu/publications/carbon-capture-and-storage

  • 26.

    Koornneef, J. et al. Carbon Dioxide Capture and Air Quality: Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality (InTech, 2011); https://www.intechopen.com/chapters/16320

  • 27.

    Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

    CAS 

    Google Scholar
     

  • 28.

    Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Rauner, S. et al. Coal-exit health and environmental damage reductions outweigh economic impacts. Nat. Clim. Change 10, 308–312 (2020).


    Google Scholar
     

  • 30.

    Sampedro, J. et al. Quantifying the reductions in mortality from air-pollution by cancelling new coal power plants. Energy Clim. Change 2, 100023 (2021).


    Google Scholar
     

  • 31.

    Fofrich, R.A. et al. Early retirement of power plants in climate mitigation scenarios. Environ. Res. Lett. 15, 094064 (2020).

  • 32.

    Sergi, B. J. et al. Optimizing emissions reductions from the U.S. power sector for climate and health benefits. Environ. Sci. Technol. 54, 7513–7523 (2020).

  • 33.

    Hong, C. et al. Impacts of climate change on future air quality and human health in China. Proc. Natl Acad. Sci. USA 116, 17193–17200 (2019).

    CAS 

    Google Scholar
     

  • 34.

    van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Clim. Change 109, 5–31 (2011).


    Google Scholar
     

  • 35.

    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).


    Google Scholar
     

  • 36.

    Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).


    Google Scholar
     

  • 37.

    Cui, R. Y. et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 10, 4759 (2019).


    Google Scholar
     

  • 38.

    Garbarino, E. et al. Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries in accordance with Directive 2006/21/EC (Publications Office of the European Union, 2018); https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/best-available-techniques-bat-reference-document-management-waste-extractive-industries

  • 39.

    Guideline on Best Available Technologies of Pollution Prevention and Control for Thermal Power Plant (Ministry of Ecology and Environment of the People’s Republic of China, 2016); http://www.mee.gov.cn/gkml/hbb/bgth/201610/t20161009_365147.htm

  • 40.

    Koornneef, J. et al. The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union. Atmos. Environ. 44, 1369–1385 (2010).

    CAS 

    Google Scholar
     

  • 41.

    Brauer, M. et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 50, 79–88 (2016).

    CAS 

    Google Scholar
     

  • 42.

    Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).


    Google Scholar
     

  • 43.

    Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. & Chin, M. Natural and transboundary pollution influences on sulfate–nitrate–ammonium aerosols in the United States: implications for policy. J. Geophys. Res. 109, D15204 (2004).


    Google Scholar
     

  • 44.

    Park, R. J., Jacob, D. J., Kumar, N. & Yantosca, R. M. Regional visibility statistics in the United States: natural and transboundary pollution influences, and implications for the Regional Haze Rule. Atmos. Environ. 40, 5405–5423 (2006).

    CAS 

    Google Scholar
     

  • 45.

    Park, R. J., Jacob, D. J., Chin, M. & Martin, R. V. Sources of carbonaceous aerosols over the United States and implications for natural visibility. J. Geophys. Res. 108, 4355 (2003).


    Google Scholar
     

  • 46.

    Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. & Mickley, L. J. Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J. Geophys. Res. 112, D06201 (2007).


    Google Scholar
     

  • 47.

    Fairlie, D. T., Jacob, D. J. & Park, R. J. The impact of transpacific transport of mineral dust in the United States. Atmos. Environ. 41, 1251–1266 (2007).

    CAS 

    Google Scholar
     

  • 48.

    Zender, C. S., Bian, H. & Newman, D. Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. 108, 4416 (2003).


    Google Scholar
     

  • 49.

    Alexander, B. et al. Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J. Geophys. Res. 110, D10307 (2005).


    Google Scholar
     

  • 50.

    Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B. & Lin, J. T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 11, 3137–3157 (2011).


    Google Scholar
     

  • 51.

    Seinfeld, J. H. & Pankow, J. F. Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 54, 121–140 (2003).

    CAS 

    Google Scholar
     

  • 52.

    Pye, H. O. T. et al. Effect of changes in climate and emissions on future sulfate–nitrate–ammonium aerosol levels in the United States. J. Geophys. Res. 114, D01205 (2009).


    Google Scholar
     

  • 53.

    Heald, C. L. et al. A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 32, L18809 (2005).


    Google Scholar
     

  • 54.

    van Donkelaar, A. et al. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmos. Chem. Phys. 8, 2999–3014 (2008).


    Google Scholar
     

  • 55.

    Janssens-Maenhout, G. et al. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).

    CAS 

    Google Scholar
     

  • 56.

    Bolshcer, M. et al. RETRO Deliverable D1-6 (RETRO Documentation, 2007).

  • 57.

    Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).


    Google Scholar
     

  • 58.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).


    Google Scholar
     

  • 59.

    Wang, Y., Jacob, D. J. & Logan, J. A. Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 1. Model formulation. J. Geophys. Res. 103, 10713–10725 (1998).

    CAS 

    Google Scholar
     

  • 60.

    Yienger, J. J. & Levy, H. Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res. 100, 11447–11464 (1995).

    CAS 

    Google Scholar
     

  • 61.

    Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C. & Koshak, W. J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res. 117, 20307 (2012).


    Google Scholar
     

  • 62.

    Ott, L. E. et al. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. 115, D04301 (2010).


    Google Scholar
     

  • 63.

    Price, C. & Rind, D. Modeling global lightning distributions in a general circulation model. Mon. Weather Rev. 122, 1930–1939 (1994).


    Google Scholar
     

  • 64.

    Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).


    Google Scholar
     

  • 65.

    Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).


    Google Scholar
     

  • 66.

    Jiang, X. et al. Revealing the hidden health costs embodied in Chinese exports. Environ. Sci. Technol. 49, 4381–4388 (2015).

    CAS 

    Google Scholar
     

  • 67.

    Lelieveld, J. et al. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc. Res. 116, 1910–1917 (2020).

    CAS 

    Google Scholar
     

  • 68.

    Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684–1735 (2018).


    Google Scholar
     

  • 69.

    Global Health Data Exchange (Institute for Health Metrics and Evaluation, accessed 17 March 2021); http://ghdx.healthdata.org/gbd-results-tool

  • 70.

    Population Estimates and Projections (World Bank Group, 2011); https://databank.worldbank.org/source/population-estimates-and-projections

  • 71.

    CIESIN Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 (NASA SEDAC, 2018).

  • 72.

    Kc, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).


    Google Scholar
     

  • 73.

    Hughes, B. B. et al. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model. Bull. World Health Org. 89, 478–486 (2011).


    Google Scholar
     

  • 74.

    Tong, D. et al. Dantong2021/Dantong2021-Globalpower_in_scenarios: global power emissions. Zenono https://doi.org/10.5281/zenodo.5637476 (2021).



  • Source link