[ad_1]

  • Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Cochrane, K., De Young, C., Soto, D. & Bahri, T. Climate Change Implications for Fisheries and Aquaculture Fisheries and Aquaculture Technical Paper 530 (FAO, 2009).

  • Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bakun, A. Coastal Upwelling Indices, West Coast of North America, 1946–1971 (NOAA Tech. Rep. NMFS SSRF-671, U.S. Dept. of Commerce, 1973).

  • Bakun, A. Daily and Weekly Upwelling Indices, West Coast of North America, 1967–1973 (NOAA, 1975).

  • Rykaczewski, R. R. & Checkley, D. M. Jr Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl Acad. Sci. USA 105, 1965–1970 (2008).

    Article 
    CAS 

    Google Scholar
     

  • García-Reyes, M. et al. Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2, 109 (2015).

    Article 

    Google Scholar
     

  • Abrahams, A., Schlegel, R. W. & Smit, A. J. Variation and change of upwelling dynamics detected in the world’s eastern boundary upwelling systems. Front. Mar. Sci. 8, 626411 (2021).

    Article 

    Google Scholar
     

  • Schwing, F. B., O’Farrell, M., Steger, J. M. & Baltz, K. Coastal Upwelling Indices West Coast of North America Technical Report NMFS SWFSC 231 (NOAA, 1996).

  • Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Sydeman, W. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Casabella, N., Lorenzo, M. & Taboada, J. Trends of the Galician upwelling in the context of climate change. J. Sea Res. 93, 23–27 (2014).

    Article 

    Google Scholar
     

  • Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Oyarzún, D. & Brierley, C. M. The future of coastal upwelling in the Humboldt Current from model projections. Clim. Dyn. 52, 599–615 (2019).

    Article 

    Google Scholar
     

  • Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling‐favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).

    Article 

    Google Scholar
     

  • Bonino, G., Di Lorenzo, E., Masina, S. & Iovino, D. Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep. 9, 1–14 (2019).

    Article 

    Google Scholar
     

  • Marchesiello, P. & Estrade, P. Upwelling limitation by onshore geostrophic flow. J. Mar. Res. 68, 37–62 (2010).

    Article 

    Google Scholar
     

  • Echevin, V. et al. Sensitivity of the Humboldt Current System to global warming: a downscaling experiment of the IPSL-CM4 model. Clim. Dyn. 38.3, 761–774 (2012).

    Article 

    Google Scholar
     

  • Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the US West Coast. J. Geophys. Res. Oceans 123, 7332–7350 (2018).

    Article 

    Google Scholar
     

  • Ding, H., Alexander, M. A. & Jacox, M. G. Role of geostrophic currents in future changes of coastal upwelling in the California Current System. Geophys. Res. Lett. 48, e2020GL090768 (2021).

    Article 

    Google Scholar
     

  • Roemmich, D. & McGowan, J. Climatic warming and the decline of zooplankton in the California Current. Science 267, 1324–1326 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Estrade, P., Marchesiello, P., De Verdière, A. C. & Roy, C. Cross-shelf structure of coastal upwelling: a two-dimensional extension of Ekman’s theory and a mechanism for inner shelf upwelling shut down. J. Mar. Res. 66, 589–616 (2008).

    Article 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar
     

  • Gill, A. E. & Adrian, E. Atmosphere–Ocean Dynamics Vol. 30 (Academic Press, 1982).

  • Enriquez, A. & Friehe, C. Effects of wind stress and wind stress curl variability on coastal upwelling. J. Phys. Oceanogr. 25, 1651–1671 (1995).

    Article 

    Google Scholar
     

  • Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jacox, M., Moore, A., Edwards, C. & Fiechter, J. Spatially resolved upwelling in the California Current System and its connections to climate variability. Geophys. Res. Lett. 41, 3189–3196 (2014).

    Article 

    Google Scholar
     

  • Nagai, T. et al. Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. J. Geophys. Res. Oceans 120, 5318–5341 (2015).

    Article 

    Google Scholar
     

  • Renault, L., Hall, A. & McWilliams, J. C. Orographic shaping of US West Coast wind profiles during the upwelling season. Clim. Dyn. 46, 273–289 (2016).

    Article 

    Google Scholar
     

  • Renault, L. et al. Partial decoupling of primary productivity from upwelling in the California Current system. Nat. Geosci. 9, 505–508 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Benazzouz, A. et al. An improved coastal upwelling index from sea surface temperature using satellite-based approach—the case of the Canary Current upwelling system. Cont. Shelf Res. 81, 38–54 (2014).

    Article 

    Google Scholar
     

  • Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: a global analysis. Sci. Total Environ. 639, 1501–1511 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Preller, R. & OBRIEN, J. J. The influence of bottom topography on upwelling off Peru. J. Phys. Oceanogr. 10, 1377–1398 (1980).

    Article 

    Google Scholar
     

  • Capet, X., Marchesiello, P. & McWilliams, J. Upwelling response to coastal wind profiles. Geophys. Res. Lett. 31, L13311 (2004).

  • Lentz, S. J. & Chapman, D. C. The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr. 34, 2444–2457 (2004).

    Article 

    Google Scholar
     

  • Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr. 33, 753–783 (2003).

    Article 

    Google Scholar
     

  • Sousa, M. C. et al. NW Iberian Peninsula coastal upwelling future weakening: competition between wind intensification and surface heating. Sci. Total Environ. 703, 134808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).

    Article 

    Google Scholar
     

  • Veneziani, M., Edwards, C. A., Doyle, J. D. & Foley, D. A central California coastal ocean modeling study: 1. Forward model and the influence of realistic versus climatological forcing. J. Geophys. Res. Oceans 114, C04015 (2009).

  • Marchesiello, P. & Estrade, P. Eddy activity and mixing in upwelling systems: a comparative study of Northwest Africa and California regions. Int. J. Earth Sci. 98, 299–308 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Quirós, N. C., Jacox, M. G., Buil, M. P. & Bograd, S. J. Future changes in eddy kinetic energy in the California Current System from dynamically downscaled climate projections. Geophys. Res. Lett. 49, e2022GL099042 (2022).

  • Chang, P. et al. An unprecedented set of high‐resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Modeling Earth Syst. 12, e2020MS002298 (2020).


    Google Scholar
     

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar
     

  • Wan, W. lgan/cesm_sw_1.0.1: some efforts on refactoring and optimizing the Community Earth System Model (CESM1.3.1) on the Sunway TaihuLight supercomputer (cesm_sw_1.0.1). Zenodo https://doi.org/10.5281/zenodo.3637771 (2020).

  • [ad_2]

    Source link