• 1.

    Mundaca, L., Ürge-Vorsatz, D. & Wilson, C. Demand-side approaches for limiting global warming to 1.5 °C. Energy Effic. 12, 343–362 (2019).

    Google Scholar

  • 2.

    Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Google Scholar

  • 3.

    Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 268–271 (2018).

    Google Scholar

  • 4.

    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 5.

    Creutzig, F. et al. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41, 173–198 (2016).

    Google Scholar

  • 6.

    Deeming, C. Addressing the social determinants of subjective wellbeing: the latest challenge for social policy. J. Soc. Policy 42, 541–565 (2013).

    Google Scholar

  • 7.

    Stiglitz, J., Sen, A. & Fitoussi, J.-P. The Measurement of Economic Performance and Social Progress Revisited: Reflections and Overview (OFCE, 2009); https://www.researchgate.net/publication/278828759_The_Measurement_of_Economic_Performance_and_Social_Progress_Revisited_Reflections_and_Overview

  • 8.

    Durand, M. The OECD better life initiative: how’s life? and the measurement of well-being. Rev. Income Wealth 61, 4–17 (2015).

    Google Scholar

  • 9.

    Fleurbaey, M. & Blanchet, D. Beyond GDP: Measuring Welfare and Assessing Sustainability (Oxford Univ. Press, 2013).

  • 10.

    Roger, C. Well-being in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (The Metaphysics Research Lab, 2008); http://plato.stanford.edu/archives/win2008/entries/well-being

  • 11.

    Mrkajic, V., Vukelic, D. & Mihajlov, A. Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: the case of the University of Novi Sad, Serbia. Renew. Sustain. Energy Rev. 49, 232–242 (2015).


    Google Scholar

  • 12.

    Lamb, W. F. & Steinberger, J. K. Human well-being and climate change mitigation. Wiley Interdiscip. Rev. Clim. Change 8, e485 (2017).

    Google Scholar

  • 13.

    Mattauch, L., Ridgway, M. & Creutzig, F. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. D Transp. Environ. 45, 64–83 (2015).

  • 14.

    Sen, A. in The Quality of Life (eds Nussbaum, M. & Sen, A.) Ch. 5 (Clarendon Press, 1993); https://scholar.harvard.edu/sen/publications/capability-and-well-being-0

  • 15.

    Max-Neef, M., Elizalde, A. & Hopenhayn, M. in Real-Life Economics: Understanding Wealth Creation (eds Ekins, P. & Max-Neef, M.) 197–213 (Routledge, 1992).

  • 16.

    Dalkmann, H. & Brannigan, C. Transport and Climate Change. Sustainable Transport: A Sourcebook for Policy-makers in Developing Cities (GTZ, 2007); https://lib.icimod.org/record/13155

  • 17.

    Bongardt, D. et al. Low-Carbon Land Transport: Policy Handbook (Routledge, 2013).

  • 18.

    van den Berg, N. J. et al. Improved modelling of lifestyle changes in integrated assessment models: cross-disciplinary insights from methodologies and theories. Energy Strategy Rev. 26, 100420 (2019).

    Google Scholar

  • 19.

    Roy, J., Some, S., Das, N. & Pathak, M. Demand side climate change mitigation actions and SDGs: literature review with systematic evidence search. Environ. Res. Lett. 16, 043003 (2021).


    Google Scholar

  • 20.

    Food Wastage Footprint: Full-Cost Accounting (FAO, 2014).

  • 21.

    Schanes, K., Dobernig, K. & Gözet, B. Food waste matters–a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).

    Google Scholar

  • 22.

    Gunders, D. & Bloom, J. Wasted: How America is Losing up to 40 Percent of its Food from Farm to Fork to Landfill (NRDC, 2017); https://www.nrdc.org/resources/wasted-how-america-losing-40-percent-its-food-farm-fork-landfill

  • 23.

    Wilson, N. L., Rickard, B. J., Saputo, R. & Ho, S.-T. Food waste: the role of date labels, package size, and product category. Food Qual. Prefer. 55, 35–44 (2017).

    Google Scholar

  • 24.

    Shukla, P. R. et al. (eds) Special Report on Climate Change and Land (IPCC, 2019).

  • 25.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 811–922 (IPCC, Cambridge Univ. Press, 2014).

  • 26.

    Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341–360 (2015).

    Google Scholar

  • 27.

    McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. Transp. Res. D Transp. Environ. 55, 322–342 (2017).

    Google Scholar

  • 28.

    Geels, F. W., Sovacool, B. K., Schwanen, T. & Sorrell, S. The socio-technical dynamics of low-carbon transitions. Joule 1, 463–479 (2017).

    Google Scholar

  • 29.

    Larkin, A., Hoolohan, C. & McLachlan, C. Embracing context and complexity to address environmental challenges in the water-energy-food nexus. Futures 123, 102612 (2020).

    Google Scholar

  • 30.

    Gota, S., Huizenga, C., Peet, K., Medimorec, N. & Bakker, S. Decarbonising transport to achieve Paris Agreement targets. Energy Effic. 12, 363–386 (2019).

    Google Scholar

  • 31.

    Shabanpour, R., Golshani, N., Tayarani, M., Auld, J. & Mohammadian, A. Analysis of telecommuting behavior and impacts on travel demand and the environment. Transp. Res. D Transp. Environ. 62, 563–576 (2018).

    Google Scholar

  • 32.

    Riggs, W. Telework and sustainable travel during the COVID-19 era. Preprint at SSRN https://doi.org/10.2139/ssrn.3638885 (2020).

  • 33.

    Policy Pathways: A Tale of Renewed Cities (International Energy Agency, 2013).

  • 34.

    Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).


    Google Scholar

  • 35.

    Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).


    Google Scholar

  • 36.

    Khalili, S., Rantanen, E., Bogdanov, D. & Breyer, C. Global transportation demand development with impacts on the energy demand and greenhouse gas emissions in a climate-constrained world. Energies 12, 3870 (2019).


    Google Scholar

  • 37.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  • 38.

    Hertwich, E. G. et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14, 043004 (2019).


    Google Scholar

  • 39.

    Pauliuk, S. et al. Global scenarios of resource and emissions savings from systemic material efficiency in buildings and cars. Nat. Commun. 12, 5097 (2021).

  • 40.

    Belussi, L. et al. A review of performance of zero energy buildings and energy efficiency solutions. J. Build. Eng. 25, 100772 (2019).

    Google Scholar

  • 41.

    Bodart, M. & De Herde, A. Global energy savings in offices buildings by the use of daylighting. Energy Build. 34, 421–429 (2002).

    Google Scholar

  • 42.

    Ürge-Vorsatz, D. et al. Advances toward a net-zero global building sector. Annu. Rev. Environ. Resour. 45, 227–269 (2020).

    Google Scholar

  • 43.

    Roy, J., Dowd, A., Muller, A., Pal, S. & Prata, N. in Global Energy Assessment—Toward a Sustainable Future (eds Global Energy Assessment Writing Team) 1527–1548 (Cambridge Univ. Press/The International Institute for Applied Systems Analysis, 2012).

  • 44.

    Dixit, M. K. 3-D printing in building construction: a literature review of opportunities and challenges of reducing life cycle energy and carbon of buildings. IOP Conf. Ser. Earth Environ. Sci. 290, 012012 (2019).

    Google Scholar

  • 45.

    Nadel, S. & Ungar, L. Halfway There: Energy Efficiency Can Cut Energy Use and Greenhouse Gas Emissions in Half by 2050 (ACEEE, 2019); https://www.aceee.org/research-report/u1907

  • 46.

    Nisa, C. F., Bélanger, J. J., Schumpe, B. M. & Faller, D. G. Meta-analysis of randomised controlled trials testing behavioural interventions to promote household action on climate change. Nat. Commun. 10, 4545 (2019).


    Google Scholar

  • 47.

    Wang, H., Chen, W. & Shi, J. Low carbon transition of global building sector under 2- and 1.5-degree targets. Appl. Energy 222, 148–157 (2018).

    Google Scholar

  • 48.

    Hook, A., Court, V., Sovacool, B. K. & Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 15, 09003 (2020).

    Google Scholar

  • 49.

    Ewing, R. & Cervero, R. ‘Does compact development make people drive less?’ The answer is yes. J. Am. Plann. Assoc. 83, 19–25 (2017).

    Google Scholar

  • 50.

    Creutzig, F. Making Smart Mobility Sustainable (Israel Public Policy Institute, 2020); https://www.ippi.org.il/smart-shared-mobility-experts-workshop

  • 51.

    Vecchio, R. & Cavallo, C. Increasing healthy food choices through nudges: a systematic review. Food Qual. Prefer. 78, 103714 (2019).

    Google Scholar

  • 52.

    Bauer, J. M., Bietz, S., Rauber, J. & Reisch, L. A. Nudging healthier food choices in a cafeteria setting: a sequential multi-intervention field study. Appetite 160, 105106 (2021).

    Google Scholar

  • 53.

    Bogueva, D., Marinova, D. & Raphaely, T. Reducing meat consumption: the case for social marketing. Asia Pac. J. Mark. Logist. 29, 477–500 (2017).

    Google Scholar

  • 54.

    Delgado, L. & Shealy, T. Opportunities for greater energy efficiency in government facilities by aligning decision structures with advances in behavioral science. Renew. Sustain. Energy Rev. 82, 3952–3961 (2018).

    Google Scholar

  • 55.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Google Scholar

  • 56.

    Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65, 102168 (2020).

    Google Scholar

  • 57.

    Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    Google Scholar

  • 58.

    World Energy Outlook 2020 (IEA, 2020); https://www.iea.org/reports/world-energy-outlook-2020

  • 59.

    Grieshop, A. P., Marshall, J. D. & Kandlikar, M. Health and climate benefits of cookstove replacement options. Energy Policy 39, 7530–7542 (2011).


    Google Scholar

  • 60.

    Woodcock, J. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374, 1930–1943 (2009).

    Google Scholar

  • 61.

    Creutzig, F., Mühlhoff, R. & Römer, J. Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environ. Res. Lett. 7, 044042 (2012).

    Google Scholar

  • 62.

    Ahmad, S., Goodman, A., Creutzig, F., Woodcock, J. & Tainio, M. A comparison of the health and environmental impacts of increasing urban density against increasing propensity to walk and cycle in Nashville, USA. Cities Health 4, 55–65 (2020).

    Google Scholar

  • 63.

    Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    Google Scholar

  • 64.

    Mazorra, J., Sánchez-Jacob, E., de la Sota, C., Fernández, L. & Lumbreras, J. A comprehensive analysis of cooking solutions co-benefits at household level: healthy lives and well-being, gender and climate change. Sci. Total Environ. 707, 135968 (2020).


    Google Scholar

  • 65.

    Burton, E. in Sustainable Urban Form (eds Burton, E. et al.) 19–29 (Routledge, 2000).

  • 66.

    Raman, S. Designing a liveable compact city: physical forms of city and social life in urban neighbourhoods. Built Environ. 36, 63–80 (2010).

    Google Scholar

  • 67.

    Golden, T. D., Veiga, J. F. & Dino, R. N. The impact of professional isolation on teleworker job performance and turnover intentions: does time spent teleworking, interacting face-to-face, or having access to communication-enhancing technology matter? J. Appl. Psychol. 93, 1412–1421 (2008).

    Google Scholar

  • 68.

    Doray, N. Cognitive Biases in Corporate Climate Action: How Industry Leaders are Mitigating Cognitive Bias in the Transition to a Low-Carbon Economy. PhD thesis, York Univ. (2019).

  • 69.

    Mazur, C., Contestabile, M., Offer, G. J. & Brandon, N. P. Assessing and comparing German and UK transition policies for electric mobility. Environ. Innov. Soc. Transit. 14, 84–100 (2015).

    Google Scholar

  • 70.

    Wang, T. et al. Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California. Nat. Sustain. 3, 597–605 (2020).

  • 71.

    Karlsson, M., Alfredsson, E. & Westling, N. Climate policy co-benefits: a review. Clim. Policy 20, 292–316 (2020).

    Google Scholar

  • 72.

    Klimaneutrales Deutschland 2045: Wie Deutschland seine Klimaziele schon vor 2050 erreichen kann (Prognos, Öko-Institut, Wuppertal-Institut, 2021); https://www.agora-energiewende.de/presse/neuigkeiten-archiv/klimaneutralitaet-in-deutschland-bereits-2045-moeglich/ (2021).

  • 73.

    Giallouros, G., Kouis, P., Papatheodorou, S. I., Woodcock, J. & Tainio, M. The long-term impact of restricting cycling and walking during high air pollution days on all-cause mortality: health impact assessment study. Environ. Int. 140, 105679 (2020).


    Google Scholar

  • 74.

    Ürge-Vorsatz, D., Herrero, S. T., Dubash, N. K. & Lecocq, F. Measuring the co-benefits of climate change mitigation. Annu. Rev. Environ. Resour. 39, 549–582 (2014).

    Google Scholar

  • 75.

    Dastrup, S. R., Zivin, J. G., Costa, D. L. & Kahn, M. E. Understanding the solar home price premium: electricity generation and ‘green’ social status. Eur. Economic Rev. 56, 961–973 (2012).

    Google Scholar

  • 76.

    Ramakrishnan, A. & Creutzig, F. Status consciousness in energy consumption decisions: a systematic review. Environ. Res. Lett. 16, 053010 (2021).

  • 77.

    Springmann, M. et al. Health-motivated taxes on red and processed meat: a modelling study on optimal tax levels and associated health impacts. PLoS ONE 13, e0204139 (2018).

    Google Scholar

  • 78.

    Sulikova, S., van den Bijgaart, I., Klenert, D. & Mattauch, L. Optimal Fuel Taxation with Suboptimal Health Choices Working Paper in Economics 794 (Univ. of Gothenburg, 2020); https://ideas.repec.org/p/hhs/gunwpe/0794.html

  • 79.

    Kuhnhenn, K., Costa, L., Mahnke, E., Schneider, L. & Lange, S. A Societal Transformation Scenario for Staying Below 1.5°C (Heinrich Böll Foundation and Konzeptwerk Neue Ökonomie, 2020); https://www.boell.de/en/2020/12/09/societal-transformation-scenario-staying-below-15degc

  • 80.

    Niamir, L. et al. Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Clim. Change 158, 141–160 (2020).

    Google Scholar

  • 81.

    Ahl, A., Accawi, G., Hudey, B., Lapsa, M. & Nichols, T. Occupant behavior for energy conservation in commercial buildings: lessons learned from competition at the Oak Ridge National Laboratory. Sustainability 11, 3297 (2019).

    Google Scholar

  • 82.

    Institute for Global Environmental Strategies, Aalto University & D-mat ltd 1.5-Degree Lifestyles: Targets and Options for Reducing Lifestyle Carbon Footprints (Institute for Global Environmental Strategies, 2019); https://www.iges.or.jp/en/publication_documents/pub/technicalreport/en/6719/15_Degree_Lifestyles_MainReport.pdf

  • 83.

    Net Zero by 2050: From Whether to How (NECF, 2018); https://europeanclimate.org/wp-content/uploads/2019/11/09-18-net-zero-by-2050-from-whether-to-how.pdf

  • 84.

    Mieux Vivre en Nord-Pas de Calais (Virage-énergie Nord-Pas de Calais, 2016); http://www.virage-energie.org/wp-content/uploads/2016/01/Virage-%C3%A9nergie-NPdC_Rapport-complet-%C3%A9tude-mieux-vivre_mars2016-1.pdf

  • 85.

    Niamir, L., Ivanova, O. & Filatova, T. Economy-wide impacts of behavioral climate change mitigation: linking agent-based and computable general equilibrium models. Environ. Model. Softw. 134, 104839 (2020).

    Google Scholar

  • 86.

    Mastrucci, A. & Rao, N. D. Bridging India’s housing gap: lowering costs and CO2 emissions. Build. Res. Inf. 47, 8–23 (2019).

    Google Scholar

  • 87.

    Mata, É., Kalagasidis, A. S. & Johnsson, F. Contributions of building retrofitting in five member states to EU targets for energy savings. Renew. Sustain. Energy Rev. 93, 759–774 (2018).

    Google Scholar

  • 88.

    Mata, É. et al. A map of roadmaps for zero and low energy and carbon buildings worldwide. Environ. Res. Lett. 15, 113003 (2020).

    Google Scholar

  • 89.

    Ellsworth-Krebs, K., Reid, L. & Hunter, C. J. Home comfort and ‘peak household’: implications for energy demand. Hous. Theory Soc. 38, 1–20 (2019).

    Google Scholar

  • 90.

    Pomponi, F. et al. A novel method for estimating emissions reductions caused by the restriction of mobility: the case of the COVID-19 pandemic. Environ. Sci. Technol. Lett. 8, 46–52 (2021).


    Google Scholar

  • 91.

    Brand, C., Dons, E. & Anaya-Boig, E. The climate change mitigation effects of active travel. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-39219/v1 (2021).

  • 92.

    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).


    Google Scholar

  • 93.

    Senbel, M., Giratalla, W., Zhang, K. & Kissinger, M. Compact development without transit: life-cycle GHG emissions from four variations of residential density in Vancouver. Environ. Plan. A 46, 1226–1243 (2014).

    Google Scholar

  • 94.

    Sheppard, C. J. R., Jenn, A. T., Greenblatt, J. B., Bauer, G. S. & Gerke, B. F. Private versus shared, automated electric vehicles for U.S. personal mobility: energy use, greenhouse gas emissions, grid integration, and cost impacts. Environ. Sci. Technol. 55, 3229–3239 (2021).


    Google Scholar

  • 95.

    Shared Mobility Simulations for Lyon (ITF, 2020); https://www.itf-oecd.org/shared-mobility-simulations-lyon

  • 96.

    Good to Go? Assessing the Environmental Performance of New Mobility (ITF, 2020); https://www.itf-oecd.org/good-go-assessing-environmental-performance-new-mobility

  • 97.

    Transition to Shared Mobility (ITF, 2017); https://www.itf-oecd.org/transition-shared-mobility

  • 98.

    Shared Mobility Simulations for Helsinki (ITF, 2017); https://www.itf-oecd.org/sites/default/files/docs/shared-mobility-simulations-helsinki.pdf

  • 99.

    Shared Mobility: Innovation for Liveable Cities (ITF, 2016); https://www.itf-oecd.org/shared-mobility-innovation-liveable-cities

  • 100.

    Ehrenberger, S. et al. Land transport development in three integrated scenarios for Germany – technology options, energy demand and emissions. Transp. Res. D Transp. Environ. 90, 102669 (2021).

    Google Scholar

  • 101.

    Hou, F. et al. Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. J. Clean. Prod. 289, 125137 (2021).


    Google Scholar

  • 102.

    Hampshire, K., German, R., Pridmore, A. & Fons, J. Electric Vehicles from Life Cycle and Circular Economy Perspectives (electrive.com, 2018); https://www.electrive.com/study-guide/electric-vehicles-from-life-cycle-and-circular-economy-perspectives/

  • 103.

    Hill, G., Heidrich, O., Creutzig, F. & Blythe, P. The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget. Appl. Energy 251, 113111 (2019).

    Google Scholar

  • 104.

    Plötz, P., Funke, S. A., Jochem, P. & Wietschel, M. CO2 mitigation potential of plug-in hybrid electric vehicles larger than expected. Sci. Rep. 7, 16493 (2017).

    Google Scholar

  • 105.

    Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).


    Google Scholar

  • 106.

    Makov, T., Shepon, A., Krones, J., Gupta, C. & Chertow, M. Social and environmental analysis of food waste abatement via the peer-to-peer sharing economy. Nat. Commun. 11, 1156 (2020).


    Google Scholar

  • 107.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).


    Google Scholar

  • 108.

    Hiç, C., Pradhan, P., Rybski, D. & Kropp, J. P. Food surplus and its climate burdens. Environ. Sci. Technol. 50, 4269–4277 (2016).

    Google Scholar

  • 109.

    Semba, R. D. et al. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 1, 481–484 (2020).

    Google Scholar

  • 110.

    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Google Scholar

  • 111.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Google Scholar

  • 112.

    Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Google Scholar

  • 113.

    Hertwich, E., Lifset, R., Pauliuk, S. & Heeren, N. Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future (IRP, 2020); https://stg-wedocs.unep.org/bitstream/handle/20.500.11822/34351/RECCR.pdf?sequence=1&isAllowed=y

  • 114.

    Pauliuk, S. et al. Linking service provision to material cycles: a new framework for studying the resource efficiency–climate change (RECC) nexus. J. Ind. Ecol. 25, 260–273 (2021).

    Google Scholar

  • 115.

    Tracking Industry 2020 (IEA, 2020); https://www.iea.org/reports/tracking-industry-2020

  • 116.

    Allwood, J. M. & Cullen, J. M. Sustainable Materials: With Both Eyes Open (Cambridge Univ. Press, 2012).

  • 117.

    Carruth, M. A., Allwood, J. M. & Moynihan, M. C. The technical potential for reducing metal requirements through lightweight product design. Resour. Conserv. Recycl. 57, 48–60 (2011).

    Google Scholar

  • 118.

    Lausselet, C., Urrego, J. P. F., Resch, E. & Brattebø, H. Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock. J. Ind. Ecol. 25, 419–434 (2021).


    Google Scholar

  • 119.

    Cooper, D. R., Skelton, A. C. H., Moynihan, M. C. & Allwood, J. M. Component level strategies for exploiting the lifespan of steel in products. Resour. Conserv. Recycl. 84, 24–34 (2014).

    Google Scholar

  • 120.

    Completing the Picture: How the Circular Economy Tackles Climate Change (Ellen MacArthur Foundation, 2019); https://www.ellenmacarthurfoundation.org/assets/downloads/Completing_The_Picture_How_The_Circular_Economy-_Tackles_Climate_Change_V3_26_September.pdf

  • 121.

    Material Efficiency in Clean Energy Transitions (IEA, 2019); https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions

  • 122.

    The Circular Economy – A Powerful Force for Climate Mitigation (Material Economics, 2018); https://materialeconomics.com/publications/the-circular-economy-a-powerful-force-for-climate-mitigation-1

  • 123.

    Crijns-Graus, W., Yue, H., Zhang, S., Kermeli, K. & Worrell, E. in Encyclopedia of Renewable and Sustainable Materials (eds Hashmi, S. & Choudhury, I. A.) 377–388 (Elsevier, 2020).

  • 124.

    Annual Review 2020 (IATA, 2020); https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2020.pdf

  • 125.

    Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).

    Google Scholar

  • 126.

    Sharmina, M. et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2 °C. Clim. Policy 21, 455–474 (2021).

    Google Scholar

  • 127.

    Bouman, E. A., Lindstad, E., Rialland, A. I. & Strømman, A. H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping–a review. Transp. Res. D Transp. Environ. 52, 408–421 (2017).

    Google Scholar

  • 128.

    McKinnon, A. Decarbonizing Logistics: Distributing Goods in a Low Carbon World (Kogan Page Publishers, 2018).

  • 129.

    Decarbonising Maritime Transport (ITF, 2018); https://www.itf-oecd.org/decarbonising-maritime-transport

  • 130.

    Roy, J. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 5 (WMO, 2018); https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter5_Low_Res.pdf

  • 131.

    O’Reilly, J., Isenhour, C., McElwee, P. & Orlove, B. Climate change: expanding anthropological possibilities. Annu. Rev. Anthropol. 49, 13–29 (2020).

    Google Scholar

  • 132.

    Creutzig, F. Limits to liberalism: considerations for the Anthropocene. Ecol. Econ. 177, 106763 (2020).

    Google Scholar

  • 133.

    Mattauch, L., Hepburn, C. & Stern, N. Pigou Pushes Preferences: Decarbonisation and Endogenous Values Climate Change Economics and Policy Working Paper 346/Grantham Research Institute on Climate Change and the Environment Working Paper 314 (London School of Economics and Political Science, 2018); https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2018/12/working-paper-314-Mattauch-et-al.pdf

  • 134.

    Hawkes, C. et al. Smart food policies for obesity prevention. Lancet 385, 2410–2421 (2015).

    Google Scholar

  • 135.

    Larcom, S., Rauch, F. & Willems, T. The benefits of forced experimentation: striking evidence from the London underground network. Q. J. Econ. 132, 2019–2055 (2017).

    Google Scholar

  • 136.

    Bamberg, S., Rölle, D. & Weber, C. Does habitual car use not lead to more resistance to change of travel mode? Transportation 30, 97–108 (2003).

    Google Scholar

  • 137.

    Weinberger, R. & Goetzke, F. Unpacking preference: how previous experience affects auto ownership in the United States. Urban Stud. 47, 2111–2128 (2010).

  • 138.

    Grinblatt, M., Keloharju, M. & Ikäheimo, S. Social influence and consumption: evidence from the automobile purchases of neighbors. Rev. Econ. Stat. 90, 735–753 (2008).

    Google Scholar

  • 139.

    Baranzini, A., Carattini, S. & Péclat, M. What Drives Social Contagion in the Adoption of Solar Photovoltaic Technology GRI Working Paper 270 (Grantham Research Institute on Climate Change and the Environment, 2017); https://ideas.repec.org/p/lsg/lsgwps/wp270.html

  • 140.

    Lanz, B., Wurlod, J.-D., Panzone, L. & Swanson, T. The behavioral effect of pigovian regulation: evidence from a field experiment. J. Environ. Econ. Manage. 87, 190–205 (2018).

    Google Scholar

  • 141.

    Rivers, N. & Schaufele, B. Salience of carbon taxes in the gasoline market. J. Environ. Econ. Manage. 74, 23–36 (2015).

    Google Scholar

  • 142.

    Andersson, J. J. Carbon taxes and CO2 emissions: Sweden as a case study. Am. Econ. J. Econ. Policy 11, 1–30 (2019).

    Google Scholar

  • 143.

    Stern, N. Why Are We Waiting? The Logic, Urgency, and Promise of Tackling Climate Change (MIT Press, 2015).

  • 144.

    Brulle, R. J. & Aronczyk, M. in Routledge Handbook of Global Sustainability Governance (eds Kalfagianni, A. et al.) Ch. 17 (Routledge, 2019).

  • 145.

    Fleurbaey, M. & Blanchet, D. Beyond GDP: Measuring Welfare and Assessing Sustainability (Oxford Univ. Press, 2013).

  • 146.

    Roger, C. Well-being in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (The Metaphysics Research Lab, 2008); http://plato.stanford.edu/archives/win2008/entries/well-being

  • 147.

    Nussbaum, M. Creating Capabilities (Harvard Univ. Press, 2011).

  • 148.

    Doyal, L. & Gough, I. in Mixed Economies in Europe (eds Blaas, W. & Foster, J.) 178–199 (Edward Elgar Publishing, 1993).

  • 149.

    Gough, I. Heat, Greed and Human Need: Climate Change, Capitalism and Sustainable Wellbeing (Edward Elgar Publishing, 2017).

  • 150.

    Alkire, S. in Wellbeing in Developing Countries (eds Gough, I. & Allister McGregor, J.) 93–108 (Cambridge Univ. Press, 2007).

  • 151.

    Von Weizsäcker, C. C. Notes on endogenous change of tastes. J. Econ. Theory 3, 345–372 (1971).

    Google Scholar

  • 152.

    Fleurbaey, M. & Tadenuma, K. Universal social orderings: an integrated theory of policy evaluation, inter-society comparisons, and interpersonal comparisons. Rev. Econ. Stud. 81, 1071–1101 (2014).

    Google Scholar

  • 153.

    Mattauch, L. & Hepburn, C. Climate policy when preferences are endogenous—and sometimes they are. Midwest Stud. Philos. 40, 76–95 (2016).

    Google Scholar

  • 154.

    Lissner, T. K., Reusser, D. E., Lakes, T. & Kropp, J. P. A systematic approach to assess human wellbeing demonstrated for impacts of climate change. Change Adapt. Socioecol. Syst. 1, 98–110 (2014).

  • 155.

    Creutzig, F. & Niamir, L. Demand-side solutions to climate change mitigation consistent with high levels of wellbeing. Preprint at Zenodo https://doi.org/10.5281/zenodo.5163965 (2020).

  • Source link