• 1.

    Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F. & Roventini, A. Evidence for sharp increase in the economic damages of extreme natural disasters. Proc. Natl Acad. Sci. USA 116, 21450–21455 (2019).

    CAS 

    Google Scholar
     

  • 2.

    Tanner, T. et al. Livelihood resilience in the face of climate change. Nat. Clim. Change 5, 23–26 (2015).


    Google Scholar
     

  • 3.

    Siders, A. R. & Keenan, J. M. Variables shaping coastal adaptation decisions to armor, nourish, and retreat in North Carolina. Ocean Coast. Manage. 183, 105023 (2020).


    Google Scholar
     

  • 4.

    Aghakouchak, A. et al. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).

    CAS 

    Google Scholar
     

  • 5.

    Adger, W. N., Arnell, N. W. & Tompkins, E. L. Successful adaptation to climate change across scales. Glob. Environ. Change 15, 77–86 (2005).


    Google Scholar
     

  • 6.

    Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change analysis. Nat. Clim. Change 11, 989–1000 (2021).


    Google Scholar
     

  • 7.

    Michel-Kerjan, E. We must build resilience into our communities. Nature 524, 389 (2015).

    CAS 

    Google Scholar
     

  • 8.

    Clayton, S. et al. Psychological research and global climate change. Nat. Clim. Change 5, 640–646 (2015).


    Google Scholar
     

  • 9.

    van Valkengoed, A. M. & Steg, L. Meta-analyses of factors motivating climate change adaptation behaviour. Nat. Clim. Change 9, 158–163 (2019).


    Google Scholar
     

  • 10.

    Bamberg, S., Masson, T., Brewitt, K. & Nemetschek, N. Threat, coping and flood prevention—a meta-analysis. J. Environ. Psychol. 54, 116–126 (2017).


    Google Scholar
     

  • 11.

    Wilson, R. S., Herziger, A., Hamilton, M. & Brooks, J. S. From incremental to transformative adaptation in individual responses to climate-exacerbated hazards. Nat. Clim. Change 10, 200–208 (2020).


    Google Scholar
     

  • 12.

    Seebauer, S. & Babcicky, P. The sources of belief in personal capability: antecedents of self-efficacy in private adaptation to flood risk. Risk Anal. 40, 1967–1982 (2020).


    Google Scholar
     

  • 13.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).


    Google Scholar
     

  • 14.

    Koerth, J., Vafeidis, A. T., Hinkel, J. & Sterr, H. What motivates coastal households to adapt pro-actively to sea-level rise and increasing flood risk? Reg. Environ. Change 13, 897–909 (2013).


    Google Scholar
     

  • 15.

    Bubeck, P., Botzen, W. J. W., Laudan, J., Aerts, J. C. J. H. & Thieken, A. H. Insights into flood-coping appraisals of protection motivation theory: empirical evidence from Germany and France. Risk Anal. 38, 1239–1257 (2018).


    Google Scholar
     

  • 16.

    Noll, B., Filatova, T. & Need, A. How does private adaptation motivation to climate change vary across cultures? Evidence from a meta-analysis. Int. J. Disaster Risk Reduct. 46, 101615 (2020).


    Google Scholar
     

  • 17.

    Schill, C. et al. A more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. 2, 1075–1082 (2019).


    Google Scholar
     

  • 18.

    van der Linden, S. The social–psychological determinants of climate change risk perceptions: towards a comprehensive model. J. Environ. Psychol. 41, 112–124 (2015).


    Google Scholar
     

  • 19.

    Babcicky, P. & Seebauer, S. Unpacking protection motivation theory: evidence for a separate protective and non-protective route in private flood mitigation behavior. J. Risk Res. 22, 1503–1521 (2019).


    Google Scholar
     

  • 20.

    Adger, W. N., Barnett, J., Brown, K., Marshall, N. & O’Brien, K. Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Change 3, 112–117 (2013).


    Google Scholar
     

  • 21.

    Tiggeloven, T. et al. Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Nat. Hazards Earth Syst. Sci. 20, 1025–1044 (2020).


    Google Scholar
     

  • 22.

    Grothmann, T. & Reusswig, F. People at risk of flooding: why some residents take precautionary action while others do not. Nat. Hazards 38, 101–120 (2006).


    Google Scholar
     

  • 23.

    Rogers, R. W. A protection motivation theory of fear appeals and attitude change. J. Psychol. 91, 93–114 (1975).


    Google Scholar
     

  • 24.

    Bubeck, P., Botzen, W. J. W. & Aerts, J. C. J. H. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal. 32, 1481–1495 (2012).

    CAS 

    Google Scholar
     

  • 25.

    Botzen, W. J. W., Kunreuther, H., Czajkowski, J. & de Moel, H. Adoption of individual flood damage mitigation measures in New York City: an extension of protection motivation theory. Risk Anal. 39, 2143–2159 (2019).


    Google Scholar
     

  • 26.

    Osberghaus, D. The effect of flood experience on household mitigation—evidence from longitudinal and insurance data. Glob. Environ. Change 43, 126–136 (2017).


    Google Scholar
     

  • 27.

    Poussin, J. K., Botzen, W. J. W. & Aerts, J. C. J. H. Factors of influence on flood damage mitigation behaviour by households. Environ. Sci. Policy 40, 69–77 (2014).


    Google Scholar
     

  • 28.

    Mol, J., Botzen, W. J. W., Blasch, J., Kranzler, E. & Kunreuther, H. C. All by myself? Testing descriptive social norm-nudges to increase flood preparedness among homeowners. SSRN Electron. J. 1–33 (2020).

  • 29.

    Bubeck, P., Botzen, W. J. W., Kreibich, H. & Aerts, J. C. J. H. Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Glob. Environ. Change 23, 1327–1338 (2013).


    Google Scholar
     

  • 30.

    Slovic, P., Finucane, M. L., Peters, E. & MacGregor, D. G. Risk as analysis and risk as feelings: some thoughts about affect, reason, risk, and rationality. Risk Anal. 24, 311–322 (2004).


    Google Scholar
     

  • 31.

    Weber, E. U., Blais, A.-R. E. & Betz, N. E. A domain-specific risk-attitude scale: measuring risk perceptions and risk behaviors. J. Behav. Decis. Mak. 15, 263–290 (2002).


    Google Scholar
     

  • 32.

    Wijayanti, P., Zhu, X., Hellegers, P., Budiyono, Y. & Van Ierland, E. C. Estimation of river flood damages in Jakarta, Indonesia. Nat. Hazards 86, 1059–1079 (2017).


    Google Scholar
     

  • 33.

    Hofstede, G. & Minkov, M. Long- versus short-term orientation: new perspectives. Asia Pac. Bus. Rev. 16, 493–504 (2010).


    Google Scholar
     

  • 34.

    Siegrist, M. & Gutscher, H. Flooding risks: a comparison of lay people’s perceptions and expert’s assessments in Switzerland. Risk Anal. 26, 971–979 (2006).


    Google Scholar
     

  • 35.

    Bubeck, P., Berghäuser, L., Hudson, P. & Thieken, A. H. Using panel data to understand the dynamics of human behavior in response to flooding. Risk Anal. 40, 2340–2359 (2020).


    Google Scholar
     

  • 36.

    Kahneman, D. Reference points, anchors, norms, and mixed feelings. Organ. Behav. Hum. Decis. Process. 51, 296–312 (1992).


    Google Scholar
     

  • 37.

    Malik, S. et al. Vulnerability of older adults in disasters: emergency department utilization by geriatric patients after Hurricane Sandy. Disaster Med. Public Health Prep. 12, 184–193 (2017).


    Google Scholar
     

  • 38.

    Sousa-Silva, R. et al. Adapting forest management to climate change in Europe: linking perceptions to adaptive responses. For. Policy Econ. 90, 22–30 (2018).


    Google Scholar
     

  • 39.

    Hall, M. P., Lewis, N. A. & Ellsworth, P. C. Believing in climate change, but not behaving sustainably: evidence from a one-year longitudinal study. J. Environ. Psychol. 56, 55–62 (2018).


    Google Scholar
     

  • 40.

    Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change 6, 622–626 (2016).


    Google Scholar
     

  • 41.

    Whitmarsh, L. Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response. J. Risk Res. 11, 351–374 (2008).


    Google Scholar
     

  • 42.

    Zhong, Y. Do Chinese people trust their local government, and why? An empirical study of political trust in urban China. Probl. Post-Communism 61, 31–44 (2014).


    Google Scholar
     

  • 43.

    White, J. D. & Fu, K.-W. Who do you trust? Comparing people-centered communications in disaster situations in the United States and China. J. Comp. Policy Anal. 14, 126–142 (2012).


    Google Scholar
     

  • 44.

    Wiering, M. & Winnubst, M. The conception of public interest in Dutch flood risk management: untouchable or transforming? Environ. Sci. Policy 73, 12–19 (2017).


    Google Scholar
     

  • 45.

    van Voorst, R. Formal and informal flood governance in Jakarta, Indonesia. Habitat Int. 52, 5–10 (2016).


    Google Scholar
     

  • 46.

    Sadiq, A. A., Tharp, K. & Graham, J. D. FEMA versus local governments: influence and reliance in disaster preparedness. Nat. Hazards 82, 123–138 (2016).


    Google Scholar
     

  • 47.

    Darr, J. P., Cate, S. D. & Moak, D. S. Who’ll stop the rain? Repeated disasters and attitudes toward government. Soc. Sci. Q. 100, 2581–2593 (2019).


    Google Scholar
     

  • 48.

    Martono, M., Satino, S., Nursalam, N., Efendi, F. & Bushy, A. Indonesian nurses’ perception of disaster management preparedness. Chin. J. Traumatol. Engl. Ed. 22, 41–46 (2019).


    Google Scholar
     

  • 49.

    Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. Normative social influence is underdetected. Pers. Soc. Psychol. Bull. 34, 913–923 (2008).


    Google Scholar
     

  • 50.

    Kappes, A., Harvey, A. H., Lohrenz, T., Montague, P. R. & Sharot, T. Confirmation bias in the utilization of others’ opinion strength. Nat. Neurosci. 23, 130–137 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Esteban, M. et al. Awareness of coastal floods in impoverished subsiding coastal communities in Jakarta: tsunamis, typhoon storm surges and dyke-induced tsunamis. Int. J. Disaster Risk Reduct. 23, 70–79 (2017).


    Google Scholar
     

  • 52.

    Freedom on the Net 2020 (Freedom House, 2020).

  • 53.

    Hudson, P., Thieken, A. H. & Bubeck, P. The challenges of longitudinal surveys in the flood risk domain. J. Risk Res. 23, 642–663 (2020).


    Google Scholar
     

  • 54.

    Kasperson, R. E. et al. The social amplification of risk: a conceptual framework. Risk Anal. 8, 177–187 (1988).


    Google Scholar
     

  • 55.

    Lo, A. Y. The role of social norms in climate adaptation: mediating risk perception and flood insurance purchase. Glob. Environ. Change 23, 1249–1257 (2013).


    Google Scholar
     

  • 56.

    Acemouglu, D., Dagkeg, M. A., Lobel, I. & Ozdaglar, A. Bayesian learning in social networks. Rev. Econ. Stud. 78, 1201–1236 (2011).


    Google Scholar
     

  • 57.

    Easley, D. & Kleinberg, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Cambridge Univ. Press, 2010).

  • 58.

    Bennett, N. J., Dearden, P., Murray, G. & Kadfak, A. The capacity to adapt? Communities in a changing climate, environment, and economy on the northern Andaman coast of Thailand. Ecol. Soc. 19, 5 (2014).


    Google Scholar
     

  • 59.

    YouGov Panel (YouGov, 2020); https://yougov.co.uk/about/our-panel/

  • 60.

    YouGov Research Methods: More Detail on YouGov Research Methods (Reuters, 2021); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2021/yougov-research-methods

  • 61.

    Nabila, M. Apjii survey: Internet users in Indonesia reached 171.17 million throughout 2018. DailySocial (13 June 2019).

  • 62.

    Lin, W. China’s Internet users reach 900 million, live-streaming ecommerce boosting consumption: report. Global Times (28 April 2020).

  • 63.

    Fan, K. W. Climate change and Chinese history: a review of trends, topics, and methods. WIREs Clim. Change 6, 225–238 (2015).


    Google Scholar
     

  • 64.

    Du, S. T. et al. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. Glob. Environ. Change 61, 3 (2020).


    Google Scholar
     

  • 65.

    James, E. Getting ahead of the next disaster: recent preparedness efforts in Indonesia. Dev. Pract. 18, 424–429 (2008).


    Google Scholar
     

  • 66.

    Certo, S. T., Busenbark, J. R., Kalm, M., Lepine, J. A. & Certo, S. T. Divided we fall: how ratios undermine research in strategic management. Organ. Res. Methods 23, 211–237 (2018).


    Google Scholar
     

  • 67.

    Jansen, P. C. P., Snijders, C. C. P. & Willemsen, M. C. Determinants of domestic risk prevention behavior: the importance of separating effects within-persons and between-persons. Risk Anal. 41, 929–943 (2020).


    Google Scholar
     

  • 68.

    Wanous, J. P., Reichers, A. E. & Hudy, M. J. Overall job satisfaction: how good are single-item measures? J. Appl. Psychol. 82, 247–252 (1997).

    CAS 

    Google Scholar
     

  • 69.

    Branscum, A. J., Johnson, W. O. & Thurmond, M. C. Bayesian beta regression: applications to expenditure data and generic distance between foot and mouth disease viruses. Aust. N. Z. J. Stat. 49, 287–301 (2007).


    Google Scholar
     

  • 70.

    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).


    Google Scholar
     

  • 71.

    Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using pymc3. PeerJ Comput. Sci. 2, e55 (2016).


    Google Scholar
     

  • 72.

    Hanson, T., Johnson, W. O. & Gardner, I. A. Hierarchical models for estimating herd prevalence and test accuracy in the absence of a gold standard. J. Agric. Biol. Environ. Stat. 8, 223–239 (2003).


    Google Scholar
     

  • 73.

    Branscum, A. J., Gardner, I. A. & Johnson, W. O. Bayesian modeling of animal- and herd-level prevalences. Prev. Vet. Med. 66, 101–112 (2004).

    CAS 

    Google Scholar
     



  • Source link