• 1.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS 

    Google Scholar
     

  • 2.

    Juffe-Bignoli, D. et al. Protected Planet Report 2014 (UNEP-WCMC, 2014).

  • 3.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

  • 4.

    Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).

    CAS 

    Google Scholar
     

  • 5.

    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).

    CAS 

    Google Scholar
     

  • 6.

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).


    Google Scholar
     

  • 7.

    Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).

  • 8.

    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).


    Google Scholar
     

  • 9.

    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).

  • 10.

    Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).


    Google Scholar
     

  • 11.

    Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).

    CAS 

    Google Scholar
     

  • 12.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS 

    Google Scholar
     

  • 13.

    Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).


    Google Scholar
     

  • 14.

    McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    CAS 

    Google Scholar
     

  • 15.

    Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).


    Google Scholar
     

  • 16.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).


    Google Scholar
     

  • 17.

    Jones, C., Giorgi, F. & Asrar, G. The coordinated regional downscaling experiment: CORDEX–an international downscaling link to CMIP5. CLIVAR Exch. 16, 34–40 (2011).


    Google Scholar
     

  • 18.

    Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    CAS 

    Google Scholar
     

  • 19.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS 

    Google Scholar
     

  • 20.

    Ordonez, A., Martinuzzi, S., Radeloff, V. C. & Williams, J. W. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Change 4, 811–816 (2014).


    Google Scholar
     

  • 21.

    UN General Assembly Resolution A/RES/70/1 (UN, 2015).

  • 22.

    Harrop, S. R. ‘Living in harmony with nature’? Outcomes of the 2010 Nagoya conference of the convention on biological diversity. J. Environ. Law 23, 117–128 (2011).


    Google Scholar
     

  • 23.

    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    CAS 

    Google Scholar
     

  • 24.

    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS 

    Google Scholar
     

  • 25.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 

    Google Scholar
     

  • 26.

    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    CAS 

    Google Scholar
     

  • 27.

    Ando, A. W. & Mallory, M. L. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region. Proc. Natl Acad. Sci. USA 109, 6484–6489 (2012).

    CAS 

    Google Scholar
     

  • 28.

    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).


    Google Scholar
     

  • 29.

    Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

  • 30.

    Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).

  • 31.

    Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS 

    Google Scholar
     

  • 32.

    Ordonez, A., Williams, J. W. & Svenning, J.-C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).


    Google Scholar
     

  • 33.

    Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).


    Google Scholar
     

  • 34.

    Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).


    Google Scholar
     

  • 35.

    Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).

    CAS 

    Google Scholar
     

  • 36.

    Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).


    Google Scholar
     

  • 37.

    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl Acad. Sci. USA 115, 6004–6009 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS 

    Google Scholar
     

  • 39.

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS 

    Google Scholar
     

  • 40.

    Fitzpatrick, M. C., Gove, A. D., Sanders, N. & Dunn, R. R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob. Change Biol. 14, 1337–1352 (2008).


    Google Scholar
     

  • 41.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    CAS 

    Google Scholar
     

  • 42.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).


    Google Scholar
     

  • 44.

    Osorio, F., Vallejos, R. & Cuevas, F. SpatialPack: Package for Analysis of Spatial Data. R package version 0.2-3 (2014).

  • 45.

    Williams, K. D. et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 8, 1509–1524 (2015).


    Google Scholar
     

  • 46.

    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Model. Earth Syst. https://doi.org/10.1002/jame.20038 (2013).

  • 47.

    Knudsen, E. M. & Walsh, J. E. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. 9, 2335–2355 (2016).


    Google Scholar
     

  • 48.

    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).


    Google Scholar
     

  • 49.

    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).


    Google Scholar
     

  • 50.

    UNEP‐WCMC & IUCN Protected Planet: The World Database on Protected Areas (WDPA, 2018).

  • 51.

    Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).


    Google Scholar
     

  • 52.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).

  • 53.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

  • 54.

    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, 30535 (2012).

  • 55.

    Asamoah, E. F. Climate Velocity and Land-use Instability 1971–2100 (Figshare, 2021); https://doi.org/10.6084/m9.figshare.14852955.v4



  • Source link