• Popovich, N. & Choi-Schagrin, W. Hidden toll of the Northwest heat wave: hundreds of extra deaths. The New York Times (11 August 2021).

  • Excess Deaths Associated with COVID-19 (CDC, 2021); https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm

  • Heat-Related Deaths in B.C. Knowledge Update (BC Coroners Service, accessed August 2021); https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/statistical/heat_related_deaths_in_bc_knowledge_update.pdf

  • Schramm, P. J. et al. Heat-related emergency department visits during the Northwestern heat wave—United States, June 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1020–1021 (2021).


    Google Scholar
     

  • American Housing Survey (AHS) (US Census Bureau, accessed August 2021); https://www.census.gov/programs-surveys/ahs.html

  • Tigchelaar, M., Battisti, D. S. & Spector, J. T. Work adaptations insufficient to address growing heat risk for U.S. agricultural workers. Environ. Res. Lett. 15, 094035 (2020).

  • Map Archive (U.S. Drought Monitor, accessed August 2021); https://droughtmonitor.unl.edu/Maps/MapArchive.aspx

  • National Fire News (NICF, accessed August 2021); https://www.nifc.gov/fire-information/nfn

  • Silverman, H., Guy, M. & Sutton, J. Western wildfire smoke is contributing to New York City’s worst air quality in 15 years. CNN (21 July 2021); https://edition.cnn.com/2021/07/21/weather/us-western-wildfires-wednesday/index.html

  • Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    CAS 

    Google Scholar
     

  • Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    CAS 

    Google Scholar
     

  • Philip, S. Y. et al. Rapid Attribution Analysis of the Extraordinary Heatwave on the Pacific Coast (World Weather Attribution, 2021); https://www.worldweatherattribution.org/wp-content/uploads/NW-US-extreme-heat-2021-scientific-report-WWA.pdf

  • Coumou, D. & Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 8, 034018 (2013).


    Google Scholar
     

  • Power, S. B. & Delage, F. P. D. Setting and smashing extreme temperature records over the coming century. Nat. Clim. Change 9, 529–534 (2019).


    Google Scholar
     

  • Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).


    Google Scholar
     

  • Thompson, V. et al. The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv. 8, eabm6860 (2022).


    Google Scholar
     

  • Taleb, N. N. The Black Swan: The Impact of the Highly Improbable (Random House, 2007).

  • Aven, T. On the meaning of a black swan in a risk context. Saf. Sci. 57, 44–51 (2013).


    Google Scholar
     

  • Lin, N. & Emanuel, K. Grey swan tropical cyclones. Nat. Clim. Change 6, 106–111 (2015).


    Google Scholar
     

  • Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).

    CAS 

    Google Scholar
     

  • Petoukhov, V. et al. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc. Natl Acad. Sci. USA 113, 6862–6867 (2016).

    CAS 

    Google Scholar
     

  • Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).


    Google Scholar
     

  • Kornhuber, K. et al. Summertime planetary wave resonance in the Northern and Southern Hemispheres. J. Clim. 30, 6133–6150 (2017).


    Google Scholar
     

  • Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2019).


    Google Scholar
     

  • Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).

    CAS 

    Google Scholar
     

  • Mann, M. E. et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).

    CAS 

    Google Scholar
     

  • Kornhuber, K. & Tamarin-Brodsky, T. Future changes in northern hemisphere summer weather persistence linked to projected arctic warming. Geophys. Res. Lett. 48, e2020GL091603 (2021).


    Google Scholar
     

  • Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2010).


    Google Scholar
     

  • Miralles, D. G., van den Berg, M. J., Teuling, A. J. & de Jeu, R. A. M. Soil moisture–temperature coupling: a multiscale observational analysis. Geophys. Res. Lett. 39, L21707 (2012).

  • Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vilà-Guerau de Arellano, J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    CAS 

    Google Scholar
     

  • Rasmijn, L. M. et al. Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nat. Clim. Change 8, 381–385 (2018).


    Google Scholar
     

  • Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R. & Cooper, H. M. Land–atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv. 2, e2020AV000283 (2021).


    Google Scholar
     

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    CAS 

    Google Scholar
     

  • Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    CAS 

    Google Scholar
     

  • Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).


    Google Scholar
     

  • Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).


    Google Scholar
     

  • Dirmeyer, P. A. et al. Projections of the shifting envelope of water cycle variability. Clim. Change 136, 587–600 (2016).


    Google Scholar
     

  • Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    CAS 

    Google Scholar
     

  • Petoukhov, V. et al. Alberta wildfire 2016: apt contribution from anomalous planetary wave dynamics. Sci. Rep. 8, 12375 (2018).


    Google Scholar
     

  • Teng, H. & Branstator, G. Amplification of waveguide teleconnections in the boreal summer. Curr. Clim. Change Rep. 5, 421–432 (2019).


    Google Scholar
     

  • Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest heat wave and associated blocking: meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49, e2021GL097699 (2022).

  • Wang, J. et al. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 48, e2020GL091753 (2021).


    Google Scholar
     

  • Berg, A. et al. Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Clim. 27, 7976–7993 (2014).


    Google Scholar
     

  • Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing extreme events to climate change: a new frontier in a warming world. One Earth 2, 522–527 (2020).


    Google Scholar
     

  • van Oldenborgh, G. J. et al. Pathways and pitfalls in extreme event attribution. Clim. Change 166, 13 (2021).


    Google Scholar
     

  • Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).


    Google Scholar
     

  • McKinnon, K. A., Rhines, A., Tingley, M. P. & Huybers, P. The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. 121, 8849–8868 (2016).


    Google Scholar
     

  • Volodin, E. M. & Yurova, A. Y. Summer temperature standard deviation, skewness and strong positive temperature anomalies in the present day climate and under global warming conditions. Clim. Dynam. 40, 1387–1398 (2013).


    Google Scholar
     

  • Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Preprint at Earth Syst. Dynam. https://doi.org/10.5194/esd-2021-90 (2021).

  • White, R. H., Kornhuber, K., Martius, O. & Wirth, V. From atmospheric waves to heatwaves: a waveguide perspective for understanding and predicting concurrent, persistent and extreme extratropical weather. Bull. Am. Meteorol. Soc. 103, E923–E935 (2021).


    Google Scholar
     

  • Xu, P. et al. Amplified waveguide teleconnections along the polar front jet favor summer temperature extremes over northern Eurasia. Geophys. Res. Lett. 48, e2021GL093735 (2021).

  • Liu, Y., Sun, C. & Li, J. The boreal summer zonal wavenumber-3 trend pattern and its connection with surface enhanced warming. J. Clim. 35, 833–850 (2022).


    Google Scholar
     

  • Sun, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat. Commun. 13, 1288 (2022).

    CAS 

    Google Scholar
     

  • Dirmeyer, P. A. The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett. 38, L16702 (2011).


    Google Scholar
     

  • Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. J. Clim. 30, 7105–7124 (2017).


    Google Scholar
     

  • Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).

    CAS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 146, 1999–2049 (2020).


    Google Scholar
     

  • Lee, D. E., Ting, M., Vigaud, N., Kushnir, Y. & Barnston, A. G. Atlantic multidecadal variability as a modulator of precipitation variability in the Southwest United States. J. Clim. 31, 5525–5542 (2018).


    Google Scholar
     

  • Pomposi, C., Giannini, A., Kushnir, Y. & Lee, D. E. Understanding Pacific Ocean influence on interannual precipitation variability in the Sahel. Geophys. Res. Lett. 43, 9234–9242 (2016).


    Google Scholar
     

  • Neale, R. B. et al. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26, 5150–5168 (2013).


    Google Scholar
     

  • Titchner, H. A. & Rayner, N. A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. 119, 2864–2889 (2014).


    Google Scholar
     

  • Hauser, M., Orth, R. & Seneviratne, S. I. Investigating soil moisture–climate interactions with prescribed soil moisture experiments: an assessment with the Community Earth System Model (version 1.2). Geosci. Mod. Dev. 10, 1665–1677 (2017).


    Google Scholar
     

  • Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    CAS 

    Google Scholar
     

  • Hauser, M. mathause/cmip_temperatures: version 0.2.1. Zenodo https://doi.org/10.5281/zenodo.5532894 (2021).

  • Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer, 2001).

  • Paciorek, C. climextRemes: tools for analyzing climate extremes. Zenodo https://doi.org/10.5281/zenodo.3240582 (2019).

  • Bell, B. et al. The ERA5 global reanalysis: preliminary extension to 1950. Q. J. Roy. Meteor. Soc. 147, 4186–4227 (2021).


    Google Scholar
     

  • Data. GISS: GISS surface temperature analysis (GISTEMP v4) (NASA, accessed January 2022); https://data.giss.nasa.gov/gistemp/

  • Bartusek, S. sambartusek/PNW_heatwave_2021: PNW_heatwave_2021. Zenodo https://doi.org/10.5281/ZENODO.7153416 (2022).



  • Source link